Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Virol ; 165: 105498, 2023 08.
Article in English | MEDLINE | ID: covidwho-20231170

ABSTRACT

BACKGROUND: Concerns around accuracy and performance of rapid antigen tests continue to be raised with the emergence of new SARS-CoV-2 variants. OBJECTIVE: To evaluate the performance of two widely used SARS-CoV-2 rapid antigen tests during BA.4/BA.5 SARS-CoV-2 wave in South Africa (May - June 2022). STUDY DESIGN: A prospective field evaluation compared the SARS-CoV-2 Antigen Rapid test from Hangzhou AllTest Biotech (nasal swab) and the Standard Q COVID-19 Rapid Antigen test from SD Biosensor (nasopharyngeal swab) to the Abbott RealTime SARS-CoV-2 assay (nasopharyngeal swab) on samples collected from 540 study participants. RESULTS: Overall 28.52% (154/540) were SARS-CoV-2 RT-PCR positive with median cycle number value of 12.30 (IQR 9.30-19.40). Out of the 99 successfully sequenced SARS-CoV-2 positive samples, 18 were classified as BA.4 and 56 were classified as BA.5. The overall sensitivities of the AllTest SARS-CoV-2 Ag test and Standard Q COVID-19 Ag test were 73.38% (95% CI 65.89-79.73) and 74.03% (95% CI 66.58-80.31) and their specificities were 97.41% (95% CI 95.30-98.59) and 99.22% (95% CI 97.74-99.74) respectively. Sensitivity was >90% when the cycle number value was <20. The sensitivity of both rapid tests was >90% in samples infected with Omicron sub-lineage BA.4 and BA.5. CONCLUSION: Accuracy of tested rapid antigen tests that target the nucleocapsid SARS-CoV-2 protein, were not adversely affected by BA.4 and BA.5 Omicron sub-variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , South Africa , COVID-19/diagnosis , Biological Assay , Nucleocapsid Proteins , Sensitivity and Specificity
2.
J Infect Dis ; 226(8): 1412-1417, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-2004993

ABSTRACT

We evaluated the performance of nasal and nasopharyngeal Standard Q COVID-19 [coronavirus disease 2019] Ag tests (SD Biosensor) and the Panbio COVID-19 Ag Rapid Test Device (nasal; Abbott) against the Abbott RealTime severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay during the Omicron (clades 21M, 21K, and 21L) wave in South Africa. Overall, all evaluated tests performed well, with high sensitivity (range, 77.78%-81.42%) and excellent specificity values (>99%). The sensitivity of rapid antigen tests increased above 90% in samples with cycle threshold <20, and all 3 tests performed best within the first week after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Sensitivity and Specificity , South Africa
3.
Virus Evol ; 7(1): veab041, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1243512

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in humans and a wide range of animal species. Its rapid global spread has resulted in a major public health emergency, necessitating commensurately rapid research to improve control strategies. In particular, the ability to effectively retrace transmission chains in outbreaks remains a major challenge, partly due to our limited understanding of the virus' underlying evolutionary dynamics within and between hosts. We used high-throughput sequencing whole-genome data coupled with bottleneck analysis to retrace the pathways of viral transmission in two nosocomial outbreaks that were previously characterised by epidemiological and phylogenetic methods. Additionally, we assessed the mutational landscape, selection pressures, and diversity at the within-host level for both outbreaks. Our findings show evidence of within-host selection and transmission of variants between samples. Both bottleneck and diversity analyses highlight within-host and consensus-level variants shared by putative source-recipient pairs in both outbreaks, suggesting that certain within-host variants in these outbreaks may have been transmitted upon infection rather than arising de novo independently within multiple hosts. Overall, our findings demonstrate the utility of combining within-host diversity and bottleneck estimations for elucidating transmission events in SARS-CoV-2 outbreaks, provide insight into the maintenance of viral genetic diversity, provide a list of candidate targets of positive selection for further investigation, and demonstrate that within-host variants can be transferred between patients. Together these results will help in developing strategies to understand the nature of transmission events and curtail the spread of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL